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A Hybrid Model to Explore How a Hippocampal CA1 Neuronal Network Is Affected by Faulty 

Molecules of an Intraneuronal CREB Signaling Network 

Abstract—Analysis of intraneuronal signaling networks 

using systems biology approaches provides insights on how 

various molecules within each neuron may affect the 

behavior of the neuron under normal and pathological 

conditions. However, memory formation, learning and 

cognition are sophisticated functions of the human brain 

that not only depend on intraneuronal molecules and 

systems, but also emerge from the collective behavior of 

neurons in complex neuronal networks and the 

interneuronal processes among them. Therefore, 

understanding psychiatric and mental disorders where 

learning, memory or cognition are impaired, requires a 

hybrid modeling approach where both intraneuronal and 

interneuronal processes are included. In this paper, a 

hybrid model is introduced where a hippocampal CA1 

neuronal network is considered, together with an 

intraneuronal signaling network that regulates the CREB 

(cAMP Response Element-Binding) protein. CREB is a 

transcription factor that is highly involved in cognitive and 

executive function of the human brain. Upon using the 

hybrid intraneuronal/interneuronal model, together with 

fault diagnosis analysis, we determine how neuronal 

excitability in the context of a neuronal network is affected, 

when there is one faulty – mutated or dysfunctional – 

molecule, or two concurrently faulty molecules. The hybrid 

approach allows to classify molecules into different classes, 

depending on how much they affect a neuronal network, 

when they are faulty. This has important applications in 

target discovery, since analysis of the hybrid model reveals 

which molecules or pairs of molecules result in substantial 

deviation from the normal network behavior, when they 

are faulty. Such molecules may be considered as proper 

targets, to develop effective therapeutics. 

Keywords— molecular networks, neuronal networks, CREB, 

signaling molecules, spike time dependent plasticity 

I. INTRODUCTION  

Memory formation, storage and retrieval involve various 

processes which are active areas of research, even 

though a large body of knowledge is accumulated over 

the past decades. Understanding such processes is highly 

relevant to memory-related disorders, to develop 

effective and proper therapeutic solutions. Nowadays, 

there is an ongoing challenge to bridge the gap between 

neuronal level molecular findings at one end and 

memory formation and learning in neuronal networks at 

the other end. Signaling molecules, including receptors, 

neurotransmitters, etc., play important roles in regulating 

neuronal functions, and their dysfunction can contribute 

to pathological conditions such as depression, 

schizophrenia and many more psychiatric and cognitive 

disorders. Discovering highly important signaling 

molecules using a variety of systems biology methods to 

analyze intracellular signaling networks is an effective 

approach to identify proper therapeutic targets [1]. 

Combining such intraneuronal studies and findings with 

neuronal network modeling and analyses is the goal of 

this paper, and has the potential to open new doors to 

target discovery and development of proper therapeutics. 

Previously, we introduced a hybrid model [2] that 

combined interneuronal parameters such as neuronal 

activity and synaptic weight or strength with signaling 

responses of an intraneuronal network in which five 

neurotransmitters regulated the transcription factor 

cAMP Response Element Binding protein (CREB), 

where cAMP stands for cyclic adenosine 

monophosphate. CREB is known to be highly involved 

in cognitive functions of the human brain, learning and 

memory processes. The hybrid model was analyzed 

using an experimentally-verified molecular fault 

diagnosis approach [3] that assessed the impact of faulty 

– mutated or dysfunctional – signaling molecules on long 

term potentiation (LTP), which is an interneuronal 

process [4]. LTP is essentially the synaptic strength 

increase over a period of time among neurons, typically 

induced by an activity in the brain that generates high 

frequency stimulations. 

In this paper, we extend our prior study now to a network 

of 100 neurons [5], to characterize the effect of faulty 

signaling molecules on neuronal excitability, in the 

context of a neuronal network. 

The rest of the paper is organized as follows. The hybrid 

interneuronal-intraneuronal model for a single neuron, 

that is, the basic LTP-signaling model, is reviewed in 

Section II. Section III has three subsections and 

discusses the architecture and synaptic plasticity 

equations of the considered hippocampal CA1 neuronal 

network, followed by the introduced network hybrid 

LTP-signaling model, to compute the effect of faulty 
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molecules on synaptic plasticity and action potential 

spike counts of the network. Some concluding remarks 

are given in Section IV. 

II. THE SINGLE NEURON HYBRID LTP-SIGNALING 

MODEL 

In Figure 1, we present our previously introduced 

neuronal hybrid model [2], where a single neuron 

responds to an input stimulation and its output depends 

on the activity level of the transcription factor CREB, 

which is regulated by an intraneuronal signaling network 

of molecules. CREB is the output of the network, 

whereas the network inputs are these five important 

neurotransmitters: dopamine, serotonin, acetylcholine, 

adenosine and glutamate. The network itself consists of 

51 intermediate molecules and 136 molecular 

interactions, all shown in [2], Figure 2. These 51 

molecules are categorized into seven classes, according 

to the effect of each single faulty molecule on the CREB 

activity level [2], Figure S2A. Additionally, based on 

how much each pair of concurrently faulty molecules 

affect the CREB activity level, all the 1275 pairs of 

molecules are divided into twenty nine classes [2], 

Figure S2B. Looking at multiple concurrently faulty 

molecules is supported by the pharmaceutical industry 

findings that multi-target drugs, e.g., multi-kinase 

inhibitors, may serve as more effective treatments [1]. 

To form the hybrid model [2], the Bienenstock-Cooper-

Munro (BCM) model of synaptic plasticity is used, by 

modulating the LTP threshold using various CREB 

activity levels. This allows to compute changes in an 

important interneuronal parameter such as the synaptic 

weight, for single and double faulty molecules [2], 

Figure 7. The results indicate that there are some single 

and pairs of molecules whose dysfunction can cause 

noticeable departure from the control or wild-type case. 

While the above results are of interest, they are limited 

only to a single neuron, and it is unknown how to 

compute and study them for a network of neurons. It is 

the main goal of this paper to develop and analyze a 

network level hybrid LTP-signaling model, as detailed 

in the next section. 

III. THE HIPPOCAMPAL CA1 NEURONAL NETWORK 

A. Network Architecture 

The considered network [5], Figure 1A consists of 100 

CA1 neurons and four different types of inhibitory 

neurons where each one is responsible for a specific 

function in memory formation. There are three major 

inputs: 100 excitatory inputs of CA3 Schaffer collateral, 

20 excitatory inputs from EC and 10 inhibitory inputs 

from septum [5], Figure 1A. According to [6] and [7], 

the excitatory inputs, CA3 and EC, are modeled as bursts 

of synaptic excitation in gamma rhythm with an average 

frequency of 40 Hz that rides on the top of 100 cycles of 

a 4 Hz theta rhythm, and the septal input is modeled as a 

burst of synaptic excitation with an average frequency of 

50 Hz and a length of 1/3 of a theta cycle. 

The CA1 neurons in the network of [5] follow the 

structure of [8], and each cell involves several 

compartments: axon, soma, two sections for basal 

dendrites, three sections for trunk, and three sections for 

distal dendrite for either of the two branches [5]. All the 

ionic currents are taken from [9]. To simulate the 

network, we use its NEURON implementation available 

at http://senselab.med.yale.edu/ModelDB/. 

B. Synaptic Plasticity in the Network 

Synaptic strength or synaptic weight modeling in this 

paper follows a spike time dependent plasticity (STDP) 

rule where LTP depends on the timing of pre and post 

synaptic activities. As an asymmetrical temporal type of 

Hebbian rule, STDP can be triggered by the correlation 

of the pre and post synaptic activations, and specifies the 

peak synaptic conductance changes [4]. The variable 

peak conductance gpeak(t), a measure of synaptic weight 

changes, is updated as follows: 

 peak peak( ) ( ) (0)g t w t g= + , (1) 

where w(t) represents the degree of potentiation such 

that: 

        

Figure 1. Schematic of the introduced hybrid interneuronal-

intraneuronal model of a neuron. 

http://senselab.med.yale.edu/ModelDB/
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Note that Δt = tpost - tpre , τ- = 5 msec, τM = -22 msec, τ+ = 

10 msec, and p and d are the potentiation and depression 

constant parameters over a 16 sec time window, 

respectively, all coming from the experimental findings 

of [10]. 

C. The Introduced Network Hybrid LTP-Signaling 

Model to Compute the Effect of Faulty Molecules on 

Synaptic Plasticity Parameter and Action Potential 

Spike Counts of the Network 

To incorporate the effect of various faulty – mutated or 

dysfunctional – signaling molecules on the considered 

neuronal network, we modulate the important parameter 

of maximum peak conductance [5] – a measure of 

synaptic weight – using a parameter  , as follows: 

 
max

peak peak1.64 (0)g g= , (4) 

where for the initial value of the peak conductance we 

have peak (0) 0.45 nSg =  [5]. When there is no faulty 

molecule, we have 1 =  and Equation (4) reduces to the 

wild-type case in [5]. The parameter   is the 

normalized synaptic weight introduced and computed in 

[2], Figure 8A, for the seven different classes of single 

faulty molecules mentioned in the first paragraph of 

Section II. All the   values are listed in Table I, along 

with the associated 
max

peakg  values. We note that except for 

class 2 of single faulty molecules, all other classes of 

single faults introduce some changes in  , compared to 

the wild-type case. 

To study how a faulty molecule may affect the 

considered neuronal network behavior, we look at the 

membrane voltages. Figure 2 demonstrates the last 20 

cycles of the entire 25 sec simulation for the somatic 

membrane voltage recorded from one of the CA1 

pyramidal cells of the network, in response to 20 EC 

inputs and 100 CA3 inputs, obtained using the network 

simulator of [5]. We notice less spikes for the faulty case, 

compared to the fault-free (control or wild-type) case. In 

fact, the total number of spikes for the control case and 

over the entire 25 sec simulation is 107, whereas it is 92 

when a molecule of class 6 is faulty in the intraneuronal 

signaling networks within the neurons. These and other 

spike counts are listed in Table I as well. We observe 

different changes in the spike counts, depending on 

which molecule is faulty. More specifically and 

compared to wild-type, classes 1 and 3 exhibit more 

spikes, classes 4-7 result in less spikes, and class 2 

generates the same number of spikes. They correspond 

to 1,   1   and 1 = , respectively. Changes in the 

number of action potential spikes caused by CREB 

changes are studied and considered in papers such as 

[11], [12], [5], without looking into the roles of 

intraneuronal signaling molecules. 

Using Table 1, the number of spikes, also known as the 

number of action potentials (APs), is graphed in Figure 

3A for different classes of signaling molecules. As 

explained in the previous paragraphs, depending on 

which signaling molecule is faulty, the number of APs 

can change differently. To relate these AP changes to the 

A) 

 

B) 

 

Figure 2. Somatic membrane voltage for one of the CA1 

neurons showing the last 20 cycles of a 25 msec time course - 

cycles 80 to 100: A) Control or wild-type or fault-free case. B) 

The case where a molecule of class 6 is faulty in the 

intraneuronal signaling networks. 

Table 1. Seven Classes of Single Faulty Molecules, the 

Associated Synaptic Plasticity Parameters and Spike Counts 

Class of 

single faulty 

molecules 

β g
max
peak  

Spike count 

(Number of action 

potentials) 

wild-type 1 0.738 107 

1 1.115 0.823 116 

2 1 0.738 107 

3 1.034 0.763 111 

4 0.705 0.520 94 

5 0.795 0.587 97 

6 0.68 0.502 92 

7 0.707 0.522 94 
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various roles that molecules play in the CREB 

intraneuronal signaling network, they are graphed in 

Figure 3B, in terms of the vulnerability levels of single-

fault classes of molecules. The hybrid model analysis 

presented in Figure 3B is a combination of intraneuronal 

signaling network analysis and the interneuronal APs of 

a neuronal network. 

The vulnerability levels of single faulty molecules of the 

CREB signaling network are computed and presented in 

[2], Figure S3A, and reproduced on the horizontal axis 

of Figure 3B here. They are computed using an 

experimentally-verified molecular fault diagnosis 

approach [3] [13]. A molecule is faulty (mutated or 

dysfunctional), when it fails to respond to the input 

signals properly, so that its output activity turns out to be 

incorrect. A high vulnerability level for a molecule 

means that the signaling network response is incorrect 

with high probability, when that specific molecule is 

faulty. 

Inspection of Figure 3B reveals that higher faulty 

molecular vulnerabilities typically correspond to more 

changes in the number of APs. For instance, class 1 of 

faulty molecules with 0.1 vulnerability results in about 

8% change in the number of APs, whereas class 6 with 0.5 

vulnerability produces about 14% change. 

One important application of the hybrid analysis 

presented in Figure 3B is that it allows us to distinguish 

among the molecules that exhibit the same vulnerability. 

This has important implications for therapeutic target 

discovery. For example, classes 4, 6, and 7 have the same 

vulnerability level of 0.5. From the intraneuronal 

vulnerability analysis perspective, these classes and their 

molecules are equivalent. However, using the hybrid 

analysis and as shown in Figure 3B, class 6 induces more 

changes in the number of APs, when a molecule from 

this class is faulty. Therefore, class 6 may suggest a more 

relevant set of molecules to consider for targeting, to 

develop therapeutics, since it seems to contribute more 

to the observed abnormal neuronal network behavior. 

This capability of the proposed neuronal network hybrid 

analysis becomes more profound, when looking at two 

concurrently faulty molecules. Following the same 

method explained at the beginning of Subsection III.C to 

simulate the neuronal network of [5] for single faults, we 

perform simulations to study the effects of double faults. 

The parameter   in Equation (4) is taken from [2], 

Figure 8B, for the twenty nine different classes of double 

faulty molecules mentioned in the first paragraph of 

Section II. The number of APs is graphed in Figure 4A 

for these twenty nine classes of double faults. Compared 

to the single fault results in Figure 3A, for the double 

faults we observe larger variations. In fact, the number 

of APs for double faults in Figure 4A changes from 88 

to 122, while for single faults in Figure 3A, it varies from 

92 to 116. 

To understand how these AP changes are associated with 

various double faults in the CREB intraneuronal 

signaling network, they are graphed in Figure 4B, in 

terms of the vulnerability levels of double-fault classes 

of molecules. The vulnerability levels of two 

concurrently faulty molecules of the CREB signaling 

network are computed and presented in [2], Figure S3B, 

and reproduced on the horizontal axis of Figure 4B here. 

They are computed using an experimentally-verified 

molecular fault diagnosis approach [3] [13]. We observe 

that higher double faulty molecular vulnerabilities 

A) 

 

B) 

 

Figure 3. Neuronal excitability results of a hippocampal 

neuronal network [5], when there is one faulty molecule in the 

intraneuronal CREB signaling network. A) Number of action 

potentials (APs) for each class of single faulty molecules, as 

well as the control (wild-type) case. B) Normalized number 

of APs versus the vulnerability level for each single-fault 

class and the control case (where all the molecules are normal 

and fault free). 
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usually correspond to more changes in the number of 

APs. For example, while the class with 0.05 vulnerability 

in Figure 4B results in about 6% change in the number 

of APs with respect to the control case, class 26 with 0.8 

vulnerability generates about 18% change. 

The utility of the proposed hybrid model and approach 

becomes more visible, when it comes to distinguishing 

among pairs of molecules that have the same 

vulnerability level. For example, there exist 34 pairs of 

molecules in classes 27, 24, and 26, all with the same 

highest vulnerability of 0.8 in Figure 4B. However, by 

A) 

 

B) 

       

 

Figure 4. Neuronal excitability results of a hippocampal neuronal network [5], when there are two concurrently faulty molecules 

in the intraneuronal CREB signaling network. A) Number of action potentials (APs) for each class of double faulty molecules, as 

well as the control (wild-type) case. B) Normalized number of APs versus the vulnerability level for each double-fault class and 

the control case (where all the molecules are normal and fault free). 
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using the normalized number APs as a parameter to 

quantify the roles of various molecular pairs, we note 

that the pairs in class 26 render more changes in the 

number of APs, when they are faulty. Therefore, they 

may serve as better candidates for therapeutic targeting. 

This is of particular importance in target discovery, 

given the usefulness of multi-target drugs such as multi-

kinase inhibitors [1].  

Finally, in this paper we have focused on single and pairs 

of concurrently faulty molecules in a hybrid neuronal 

network model, to understand how they affect the 

network behavior. Using the approach of [14], one can 

extend this study to three or more concurrently faulty 

molecules. 

IV. LIMITATIONS AND FUTURE WORK 

This study offers a comprehensive computational model 

to understand how disruptions in CREB signaling can 

impact the hippocampal CA1 neuronal network. 

However, the absence of direct experimental validation 

is a limitation. Collaborating with experimental labs in 

the future will be essential to confirm our findings and 

strengthen the model’s reliability. Additionally, while 

we chose the BCM model and STDP to simulate synaptic 

plasticity, future studies could explore other plasticity 

models and test our approach on larger, more complex 

networks. Addressing these areas will help us expand our 

model’s impact and biological relevance. 

V. CONCLUSION 

This paper introduces a hybrid model which is developed 

to explore the effect of various molecules of a CREB 

intracellular signaling network, in the context of a 

hippocampal CA1 neuronal network. The transcription 

factor CREB plays an essential role in cognitive and 

executive functions of the human brain. Analysis of this 

hybrid model allows to classify the intraneuronal 

molecules into different classes, on the extent to which 

their faulty behaviors affect certain aspects of the 

neuronal network, for example, the action potential spike 

counts. 

The hybrid intraneuronal/interneuronal model is 

analyzed when there is only one faulty – dysfunctional 

or mutated – molecule, or when there are two 

concurrently faulty molecules. The results complement 

and expand the knowledge and information that can be 

obtained via analyzing only the intraneuronal signaling 

network. Looking at the roles of molecules in a two-

dimensional intraneuronal/interneuronal feature space 

can provide a better understating of complex psychiatric 

and mental disorders such as depression, schizophrenia, 

bipolar disorder, etc. It can also assist with identifying 

potentially better therapeutic targets. 
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